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The well-known Hill–Clohessy–Wiltshire equations that are used for the design of formation flight relative orbits

are based on a circular reference orbit. Classical solutions such as the projected circular or general circular relative

orbit are no longer valid in the presence of eccentricity. This paper studies the effects of eccentricity on relative

motion for Keplerian orbits. A new linear condition for bounded motion in relative position coordinates is derived

that is valid for arbitrary eccentricities and epoch of the reference orbit. It is shown that the solutions to the

Tschauner–Hempel equations that are used for rendezvous in elliptic orbits are directly related to the description of

relativemotionusing small orbital element differences. Ameaningful geometric parameterization for relativemotion

near aKeplerian elliptic orbit of arbitrary eccentricity is also developed. The eccentricity-induced effects are studied

and exploited to obtain desired shapes of the relative orbit. Equations relating these parameters to initial conditions

and differential classical and nonsingular elements are also derived. This parameterization is very useful for the

analysis of more complicated models, such as the nonlinear relative motion problem.

Introduction

T HE study of relative motion between satellites in Keplerian
elliptic orbits has been of recent interest from the point of view

of designing clusters of spacecraft flying in formation around a
planet. Such formations find use in terrestrial observation, com-
munication, and stellar interferometry. Of more recent interest is the
potential of use of such formations in orbits that are highly eccentric.
Examples of such missions have been presented by Carpenter et al.
[1], which include reference low Earth orbit and highly elliptical
orbit missions. TheMagnetosphereMultiscaleMission [2] is another
example, in which the apogee and perigee are of the order of
12–30R� and 1:2R�, respectively, (with R� denoting the radius of
the Earth), yielding eccentricities of the order of 0.8 and higher.

Traditional formation design relies on the study of the Hill–
Clohessy–Wiltshire (HCW) equations [3,4]. This model assumes a
circular reference orbit and a linearized differential gravity field
based on the two-body problem. Conditions for bounded motion,
known as HCW initial conditions, are easily derived for this model
and they have found wide applicability for formation flight. The
violation of the underlying assumptions of the HCWmodel leads to
deviation from themotion predicted. A large body of literature exists
that deals with the violation of the assumptions, either individually,
or in various combinations. The effects of nonlinearity in the
differential gravity field, have been studied by the use of perturbation
techniques, as shown in [5–8]. The effects of eccentricity of the
reference orbit on the formation have also been studied extensively.
Anthony and Sasaki [9] obtained approximate solutions to the HCW
equations by including quadratic nonlinearities and first-order
eccentricity effects. Second-order eccentricity effects were also
accounted for, in [10,11], by Hamiltonian modeling of the HCW
equations. Vaddi et al. [12] studied the combined problem of
eccentricity and nonlinearity and obtained periodicity conditions in
the presence of these effects. However, these conditions lose validity

even for intermediate eccentricities, primarily because of the higher-
order coupling between eccentricity and nonlinearity. Inalhan et al.
[13] obtained a boundedness condition for the linear problem with
arbitrary eccentricities, by providing an explicit equation relating the
initial conditions at perigee. For all other cases of epoch, the initial
conditions can be obtained bymatrix operations. Sengupta et al. [14]
obtained expressions for periodic relative motion by accounting for
quadratic nonlinearities, valid for arbitrary eccentricities. Gurfil [15]
posed the bounded-motion problem in terms of an energy-matching
condition and presented an algorithm for optimal single-impulse
formation-keeping. The boundedness condition in [15] is presented
as the solution to a sixth-order polynomial equation in one variable,
and is valid for general two-body motion.

State transition matrices that reflect the effect of eccentricity have
also been derived, and are presented in [16–19]. Melton [16] used a
series expansion for radial distance and true anomaly, in terms of
time. However, for moderate eccentricities, the convergence of such
series requires the inclusion of higher-order terms. Other state
transition matrices are obtained from the Tschauner–Hempel
equations [20] and use the true anomaly f as the independent
variable, and are therefore implicit in time.

Relative motion can also be characterized by analytically
propagating the orbital elements corresponding to each satellite
[21,22]. In [21], this is performed in a time-explicit manner, by using
a Fourier–Bessel expansion of the true anomaly in terms of the mean
anomaly. However, it is shown that for eccentricities of 0.7, terms up
to the tenth order in eccentricity are required in the series. In [22], a
methodology has been proposed where Kepler’s equation [23] is
solved for the Deputy, but is not required for the Chief, if the Chief’s
true anomaly is used as the independent variable.

Because of the nonlinear mapping between local frame Cartesian
coordinates and orbital elements, errors in the Cartesian frame are
translated into very small errors in the orbital angles. Thus, linear
equations relating relative position and velocity to small orbital
element differences have also been obtained, by either obtaining the
partials of the former with respect to the latter [24], or by linearizing
the direction cosine matrix of the reference frame rotating with the
Deputy, with respect to that of the Chief [25]. The linear relationship
between relative motion in the rotating frame, and differential orbital
elements, allows the characterization of small orbital element
differences in terms of the constants of the HCW solutions, namely,
relative orbit size and phase. This feature has been used by [25,26] to
design formations in near-circular orbits. The basic zero-secular drift
condition is satisfied by setting the semimajor axis of the Deputy and
Chief to be the same. The characterization of relative orbit geometry
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is achieved by relating the rest of the orbital element differences to its
shape, size, and the initial phase angle.

Even though relative motion near an arbitrary Keplerian elliptic
orbit is well represented in the literature, the characterization of
formations in such orbits has still not been addressed completely.
Schaub [27] related the differential orbital elements to the constants
of the HCW solution for near-circular references orbits. Lane and
Axelrad [28] expressed relative motion near elliptic orbits, in terms
of integration constants and differential orbital elements. Zanon and
Campbell [29] discussed the effects of the constants of integration in
the solution to the Tschauner–Hempel equations, on the relative
motion equations. The last two works are useful for mission design
near arbitrarily eccentric orbits; however, some key issues still
require exploration, for example, how the choice of the constants or
orbit eccentricity affect the relative orbit shape and size.

This paper presents a meaningful parameterization for formation
geometry, near-elliptic orbits of arbitrary eccentricity, in terms of
parameters that are analogous to the special case of the HCW
constants. These parameters are directly related to orbit shape and
size, unlike previous works, in the sense that they provide useful and
direct insight into the relative orbit geometry, for arbitrarily eccentric
orbits. These parameters are derived using the Tschauner–Hempel
(TH)model as a basis. Thismodel is useful in deriving a simple linear
relationship between the initial conditions that lead to bounded
motion, for arbitrary eccentricity and epoch. By simple mani-
apulation, the unity between the THmodel and the geometricmethod
as proposed by Alfriend et al. [25] is revealed, and the linear
relationships between the new parameterization, constants of
integration of the TH model, and differential orbital elements, are
developed. Furthermore, by the use of Fourier–Bessel expansions
using the true and mean anomalies as independent variables, the
effects of eccentricity on formation geometry are characterized. The
use of the new parameterization intuitively reveals these effects, and
schemes for formation design are suggested that accommodate
eccentricity effects. Both true anomaly as well as time are treated as
the independent variable in this approach.

General Solution to TH Relative Motion Equations

Consider an Earth-centered inertial (ECI) frame, denoted by N ,
with orthonormal basisBN � f ix iy iz g. The vectors ix and iy lie
in the equatorial plane, with ix coinciding with the line of the
equinoxes, and iz passes through the North Pole. The analysis uses a
local-vertical-local-horizontal (LVLH) frame, as shown in Fig. 1 and
denoted byL, that is attached to the target satellite (also called Leader
or Chief). This frame has basis BL � f ir i� ih g, with ir lying
along the radius vector from the Earth’s center to the satellite, ih
coinciding with the normal to the plane defined by the position
and velocity vectors of the satellite, and i� � ih � ir. The TH

equations [20] use the true anomaly of theChief,f as the independent
variable, instead of time t. Let the position of the Deputy in the
Chief’s LVLH frame be denoted by %� uir � vi� � wih, where u,
v, and w denote the components of the position vector along the
radial, along-track, and out-of-plane directions, respectively. The
position is normalized with respect to the radius of the Chief,
r� p=�1� e cos f�, where p� a�2 is the semiparameter, a is the
semimajor axis, ��p�1 � e2�, and e is the eccentricity. The
normalized position vector is given as follows:

� � xir � yi� � zih � �1� e cos f�
%

p
(1a)

� 0 � �1� e cos f�%
0

p
� e sin f %

p
(1b)

� 00 � �1� e cos f�%
00

p
� 2e sin f

%0

p
� e cos f %

p
(1c)

where x, y, and z are the components of the normalized relative
position, and (0) and (00) denote derivatives with respect to f. The
relative motion equations using the normalized position and velocity
(TH equations) are

x00 � 2y0 � 3x

�1� e cos f� � 0 (2a)

y00 � 2x0 � 0 (2b)

z00 � z� 0 (2c)

Equations (2) have the following general solution [30,31]:

x�f� � d1
e
cos f�1� e cos f� � d2 sin f�1� e cos f�

� d3 sin f�1� e cos f�I�f� (3a)

y�f� � � d1
e
sin f�2� e cos f� � d2

e
�1� e cos f�2

� d3
e
��1� e cos ��2I�f� � cot f	 � d4 (3b)

z�f� � d5 cos f� d6 sin f (3c)

where

I�f� �
Z
f

f0

1

sin2f�1� e cos f�2 df (4)

As shown in [31], Eq. (4) is easily evaluated in terms of the eccentric
anomaly E, which is related to the true anomaly by the following
equation:

tan
f

2
�

������������
1� e
1 � e

r
tan
E

2
(5)

However, I�f� has a singularity for f� n�, which can be removed,
as shown by Carter [32], by integrating Eq. (4) by parts:

I�f� � 2e

Z
f

f0

cos f

�1� e cos f�3 df � cot f

�1� e cos f�2 � cJ

� 2eJ�f� � cot f

�1� e cos f�2 � cJ (6)

where cJ is an arbitrary constant. Carter [33] has shown that the state
transition matrix formulated using J�f� also has singularities whenFig. 1 Frames of reference.
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e� 0, which can be removed if J�f� too, is integrated by parts.
Yamanaka and Ankersen [19] have shown that J�f� may also be
conveniently rewritten in terms of Kepler’s equation [23], to be
uniformly valid for 0 
 e < 1. As will be shown later, this step also
demonstrates the unity between the TH solutions and the differential
orbital element approach [25], by revealing a linear relationship
between the constants of integration of the former approach, and
differential orbital elements of the latter approach. The integral J�f�
is rewritten as

J�f� � � 3e

2�5
K�f� � 1

2�2
sin f�2� e cos f�
�1� e cos f�2 (7)

where

K�f� �
Z
f

f0

�3

�1� e cos f�2 df

� �E � e sinE� � �E0 � e sinE0� � n�t (8)

where n�p��=a3� is the mean motion of the reference orbit,
and�t is the elapsed time since epoch. The constants are rearranged
for convenience in the following fashion: c1 � d1=e � d3=�2,
c2 � d2 � d3cJ, c3 � ed3, c4 � d2=e� d3cJ=e� d4, and c5;6�
d5;6. Then, the solutions to the TH equations are

x�f� � c1 cos f�1� e cos f� � c2 sin f�1� e cos f�

� 2c3
�2

�
1 � 3e

2�3
sin f�1� e cos f�K�f�

�
(9a)

y�f� � �c1 sin f�2� e cos f� � c2 cos f�2� e cos f�

� 3c3
�5
�1� e cos f�2K�f� � c4 (9b)

z�f� � c5 cos f� c6 sin f (9c)

The relative velocity components are as follows:

x0�f� � �c1�sin f� e sin 2f� � c2�cos f� e cos 2f�

� 3ec3
�2

�
sin f

�1� e cos f� �
1

�3
�cos f� e cos 2f�K�f�

�
(10a)

y0�f� � �c1�2 cos f� e cos 2f� � c2�2 sin f� e sin 2f�

� 3c3
�2

�
1 � e

�3
�2 sin f� e sin 2f�K�f�

�
(10b)

z0�f� � �c5 sin f� c6 cos f (10c)

The constants of integration can be evaluated in terms of
the initial conditions, and are related to the pseudoinitial values
used in [19]. Let the initial conditions be denoted by x0�
f x0 y0 z0 x00 y00 z00 g>, specified at arbitrary initial true
anomaly f0, and let the vector of integration constants be denoted by
c� fc1; . . . ; c6g>. Then, x0 �L�f0�c where the �i; j�th entry of L
is the term with cj as a coefficient, in the expression for the ith
component of the state vector. It can be shown that detL� 1, and if
M denotes the inverse of L, then M� adjointL. It follows that
c�M�f0�x0, where

c1 ��
3

�2
�e� cos f0�x0 �

1

�2
sin f0�1� e cos f0�x00

� 1

�2
�2 cos f0 � e� ecos2f0�y00 (11a)

c2 ��
3

�2
sin f0�1� e cos f0 � e2�

�1� e cos f0�
x0

� 1

�2
�cos f0 � 2e� ecos2f0�x00

� 1

�2
sin f0�2� e cos f0�y00 (11b)

c3 � �2� 3e cos f0 � e2�x0 � e sin f0�1� e cos f0�x00
� �1� e cos f0�2y00 (11c)

c4��
1

�2
�2� ecosf0�

�
�

3esinf0
�1� ecosf0�

x0��1� ecosf0�x00� esinf0y00
�
� y0 (11d)

c5 � cos f0z0 � sin f0z
0
0 (11e)

c6 � sin f0z0 � cos f0z
0
0 (11f)

Because x�f� �L�f�c�L�f�M�f0�x0, the state transition matrix
[19] for this system is ��f; f0� �L�f�M�f0�.

Mapping Between States and Differential
Orbital Elements

In the geometric description for relativemotion, the position in the
LVLH frame is written in terms of differential orbital elements by
linearizing the direction cosine matrix that orients the Deputy LVLH
framewith respect to theChief LVLH frame.Alfriend et al. [25] have
shown that

u� �r (12a)

v� r���� ��cos i� (12b)

w� r��i sin � � ��sin i cos �� (12c)

where �
œ
denotes a small change in the orbital element œ. Dividing

by r to get the corresponding normalized states,

x� �r=r (13a)

y� ��� ��cos i (13b)

z� �i sin � � ��sin i cos � (13c)

Following the development in [27], it can be shown that

�r

r
� e

�3
sin f�1� e cos f��M0 �

1

�2
cos f�1� e cos f��e

�
�
1 � 3e

2�3
sin f�1� e cos f�n�t

�
�a

a
(14)

wherein the fact that themean anomaly difference �M is the sumof its
initial value �M0, and the difference inmeanmotion propagated over
the elapsed time since epoch, has been used:

�M� �M0 � �n�t� �M0 �
3

2
n�t

�a

a
(15)
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Because fromEq. (8),n�t� K�f�, a direct correspondence between
Eq. (14) and Eq. (9a) is observed:

�a� 2a

�2
c3 (16)

�M0 �
�3

e
c2 (17)

�e���2c1 (18)

Comparing the expression for z from Eqs. (13) with Eq. (9c), the
following are obtained:

�i sin! � ��sin i cos!� c5 (19a)

�i cos!� ��sin i sin!� c6 (19b)

Consequently,

�i� sin!c5 � cos!c6 � sin �0z0 � cos �0z
0
0 (20)

��sin i�� cos!c5 � sin!c6 ���cos �0z0 � sin �0z
0
0� (21)

where �0 � !� f0. Finally, comparing the expression for y from
Eqs. (13) with Eq. (9b), the following result is obtained:

�!� c4 �
�M0

�3
� ��cos i (22)

Thus, the orbital element differences (to the first order) can be
obtained by substituting c1;...;6 in the preceding equations. Let �œ �
f �a �e �i �� �! �M0 g> denote the vector of differential
orbital elements. Let œC denote the orbital elements of the Chief.
Then the equations relating differential orbital elements to the
constants of integration as shown may be summarized by
�
œ
�N�œC�c, where the matrix N has as its entries, the coefficients

of the integration constants comprising the differential orbital
elements. Consequently, the relation �

œ
�N�œC�M�f0�x0 yields

the differential orbital elements in terms of the initial conditions. It
can be shown that detN� 2�3a=�e sin i� and detM� 1; this means
the mapping from relative Cartesian coordinates to differential
orbital elements is singular when the reference orbit is circular or
equatorial (e� 0 or i� 0, respectively). In particular, if e is a small
number (or zero), then calculations for �M0 and �! from Eqs. (17)
and (22), respectively, yield large numbers (or are undefined) due to e
appearing in the denominator. However, their sum is a small number,
consistent with assumption of small orbital element differences. This
problem may be solved by using nonsingular orbital elements [23].
The solutions to the TH equations and the development of
differential nonsingular orbital elements in terms of the initial
conditions are presented in the Appendix. The singularity due to
e� 0 also ceases to be a problem if the parameterization developed
in this paper is used. However, for the following sections, results are
shown using the classical orbital element set because they are more
concisely expressed in terms of these elements.

Drift due to Mismatched Semimajor Axes

If �a (and consequently, c3) is not zero, then from Eqs. (9) it is
evident that x and y will grow in an unbounded fashion, due to the
presence ofK�f�, which is an increasing function. After one orbit of
the Chief, the drift in x and y directions are thus:

xdrift� x�f0� 2��� x�f0���
6�c3
�5

esinf0�1� ecosf0� (23a)

ydrift � y�f0 � 2�� � y�f0� � �
6�c3
�5
�1� e cos f0�2 (23b)

The drift in unscaled coordinates, in terms of differential semimajor
axis, can be calculated to yield the following:

udrift ��
3�

�
e sin f0�a (24a)

vdrift ��
3�

�
�1� e cos f0��a (24b)

Thus the total drift in position per orbit, denoted by %drift=orbit is

%drift=orbit��u2drift�v2drift�1=2�
3�

�
�a�1�e2�2ecosf0�1=2 (25)

This drift is maximum at f0 � 0, and minimum at f0 � �, and is
bounded as shown:

3��a

������������
1 � e
1� e

r

 %drift=orbit 
 3��a

������������
1� e
1 � e

r
(26)

Themaximum andminimum value of the drift were also obtained by
Carpenter and Alfriend [34] by evaluating the relative drift and
apoapsis and periapsis only.

Periodic Orbits

Periodic solutions may be obtained by choosing initial conditions
such that c3 � 0, because the rest of the terms in the solution are
sinusoids, and therefore, periodic. Consequently, Eq. (11c) results in
the following relation for bounded relative motion:

�2� 3e cos f0 � e2�x0 � e sin f0�1� e cos f0�x00
� �1� e cos f0�2y00 � 0 (27)

In unscaled coordinates, this is transformed into the following linear
condition for bounded relative motion, for arbitrary eccentricity and
epoch:

�2� e cos f0��1� e cos f0�2
�
u

p

�
� e sin f0

�
_u

����
p

�

r �

� e sin f0�1� e cos f0�2
�
v

p

�

� �1� e cos f0�
�
_v

����
p

�

r �
� 0 (28)

In the preceding equation, the symbol �_� is used to signify a
derivative with respect to time; consequently, _u and _v are radial and
along-track components of the dimensional velocities in the rotating
frame of the Chief.

Equation (27) is satisfied for an infinite combination of initial
conditions, except when f0 � 0 or f0 � �. Furthermore, when
e� 0, this reduces to the well-known Hill’s condition for
periodicity. Without loss of generality, one may choose

y00 ��
�2� 3e cos f0 � e2�
�1� e cos f0�2

x0 �
e sin f0

�1� e cos f0�
x00 (29)

With c3 � 0, the expressions for the trajectory are considerably
simplified.Upon substituting Eq. (29) in Eqs. (11), the constantsmay
be rewritten in terms of dimensional position and velocity with f as
the independent variable,

c1 �
�cos f0 � e cos 2f0�
�1� e cos f0�2

x0 �
sin f0

�1� e cos f0�
x00

� u0
p
cos f0 �

u00
p
sin f0 (30a)
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c2 �
�sin f0 � e sin 2f0�
�1� e cos f0�2

x0 �
cos f0

�1� e cos f0�
x00

� u0
p
sin f0 �

u00
p
cos f0 (30b)

c4 � y0 �
�2� e cos f0�
�1� e cos f0�

�
e sin f0

1� e cos f0
x0 � x00

�

� v0
p
�1� e cos f0� �

u00
p
�2� e cos f0� (30c)

c5 � z0 cos f0 � z00 sin f0 �
w0

p
�cos f0 � e�

� w
0
0

p
sin f0�1� e cos f0� (30d)

c6�z0 sinf0�z00 cosf0�
w0

p
sinf0�

w00
p
cosf0�1�ecosf0� (30e)

A concise representation of the most general solution for periodic
motion near a Keplerian elliptic orbit with linearized differential
gravity, denoted by the subscript }, is given by

x}�f� �
%1
p
sin�f� �0��1� e cos f� (31a)

y}�f� �
%1
p
cos�f� �0��2� e cos f� �

%2
p

(31b)

z}�f� �
%3
p
sin�f� �0� (31c)

where the new relative orbit parameters, %1;...;3, �0, and �0, are
obtained from Eqs. (30), and are given by

%1 � �u20 � u020 �1=2 �
a

�
��2�e2 � e2�M2

0�1=2 (32a)

%2 � v0�1� e cos f0� � u00�2� e cos f0�

� p
�
�!� ��cos i� 1

�3
�M0

�
(32b)

%3� ��1� 2ecosf0� e2�w2
0��1� ecosf0�2w020

� 2e sinf�1� ecosf�w0w
0
0	1=2�p��i2� ��2sin2i�1=2 (32c)

�0 � tan�1
�
u0
u00

�
� f0 � tan�1

�
� �
e

�e

�M0

�
(32d)

�0 � tan�1
�

�1� e cos f0�w0

�1� e cos f0�w00 � e sin f0w0

�
� f0

� tan�1
�
� ��sin i

�i

�
� ! (32e)

The constants c1;...;6 may be expressed using the design
parameters, as shown:

c1 �
%1
p
sin�0; c2 �

%1
p
cos�0; c4 �

%2
p

c5 �
%3
p
sin�0; c6 �

%3
p
cos�0 (33)

Obviously, the most general form of periodic solutions to the HCW
equations are a special case of Eqs. (31).

Two advantages of using the new parameterization have been
mentioned earlier, namely, their uniform validity for all
eccentricities, and the fact that %1 and %3 are obviously size
parameters, %2 is a bias parameter, and �0 and �0 are phase angle
parameters. Therefore, the effects of the changing one or more of
these parameters is intuitively clear. Furthermore, the concise nature
of this parameterization proves very useful for the study of more
complicated models of relative motion, as shown by Sengupta
et al.[14].

The differential orbital elements may also be rewritten in terms of
the parameter set. These relations are useful, for example, if Gauss’
variational equations are used to initiate a numerical procedure for
formation establishment or reconfiguration. Such an approach was
used by Vaddi et al. [35] to establish and reconfigure formations
near-circular orbits, using impulsive thrust. Substituting Eq. (33) into
Eqs. (16–22) and setting c3 � 0 results in the following:

�a� 0 (34a)

�e���2c1 ��
%1
a
sin�0 (34b)

�i� sin!c5 � cos!c6 �
%3
p
cos��0 � !� (34c)

��� 1

sin i
�� cos!c5 � sin!c6� � �

%3
p

sin��0 � !�
sin i

(34d)

�M0 �
�3

e
c2 �

%1
a

�

e
cos�0 (34e)

�!� %2
p
� �M0

�3
� ��cos i (34f)

Corresponding expressions for nonsingular orbital elements are
presented in the Appendix.

Eccentricity-Induced Effects on Orbit Geometry

The most general form of periodic motion in the setting of the
HCW equations is given by the following equations (wherein
subscript h denotes HCW solutions):

uh � k1 sin�� � ’0� (35a)

vh � 2k1 cos�� � ’0� � k2 (35b)

wh � k3 sin�� �  0� (35c)

where � � nt is the normalized time or mean anomaly, though in the
case of the HCW equations, this is equivalent to true anomaly
because eccentricity is assumed zero. The actual relative orbit has a
trajectory in the local frame whose components are given by the
following expressions:

u} � rx} � %1 sin�f� �0� (36a)

v}�ry}�2%1 cos�f��0�
�1��e=2�cosf	
�1�ecosf� �

%2
�1�ecosf� (36b)
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w} � rz} � %3
sin�f� �0�
�1� e cos f� (36c)

Eccentricity effects may be studied by expanding v} and w} as
Fourier series. In this section, the effects of eccentricity are analyzed
by using both true anomaly and time as the independent variable.

True Anomaly as the Independent Variable

The Cauchy residue theorem is now used to obtain the coefficients
of cos kf and sin kf to form Fourier series for v} and w}. This is
similar to the approach used in [23] to obtain a series expansion of
eccentric anomaly in terms of mean anomaly. It can be shown that

cos f
�2� e cos f�
�1� e cos f� � �

"

�
� �2� �� �

2�
��1� �� cos f

� 2

��1� ��
X1
k�2
��"�k�1 cos kf (37a)

sinf
�2�ecosf�
�1�ecosf��

�3���
�1���sinf�

2

�1���
X1
k�2
��"�k�1 sinkf (37b)

1

�1� e cos f� �
1

�
� 2

�

X1
k�1
��"�k cos kf (37c)

where "�p��1 � ��=�1� ��	 �O�e�. Consequently,

v}�f� �
�
� "
�
%1 cos�0 �

1

�
%2

�

�
�
�2� �� �2�
��1� �� %1 cos �0 � 2

"

�
%2

�
cos f

� �3� ���1� �� %1 sin�0 sin f�
2

��1� ��
X1
k�2
��"�k�1

� f�%1 cos�0 � "�1� ��%2	 cos kf � �%1 sin�0 sin kfg (38a)

w}�f���
"

�
%3 sin�0�

2

��1���%3��cos�0 sinf� sin�0 cosf�

� 2

��1���%3
X1
k�2
��"�k�1��cos�0 sinkf� sin�0 coskf� (38b)

It is observed that both the v and w components of motion have
constant terms, a primary harmonic, associated with relative orbit
size parameters, and higher-order harmonics. Thus the five effects
of eccentricity are immediately recognized. The first effect is
obviously the presence of higher-order harmonics, whose amplitudes
successively decrease by a factor of ". For nonzero eccentricities, this
causes deviation from the well-known circular shape of the HCW
solutions.

The second effect is that of amplitude scaling, as may be observed
by the presence of terms dependent on � in the amplitudes of the
primary harmonics in both v and w. Consequently, as eccentricity
increases, for the same choice of %1;...;3, the orbit tends to shrink in the
along-track direction and expand in the out-of-plane direction.

The third effect of eccentricity is the introduction of a phase shift.
This is readily observed by recasting Eq. (38b) as

w}�f� � �
"

�
%3 sin�0 �

2

��1� �� �sin
2�0 � �2cos2�0�1=2%3

� sin�f� ~�0� �
2

��1� �� �sin
2�0 � �2cos2�0�1=2%3

�
X1
k�2
��"�k�1 sin�kf� ~�0� (39)

where

~�0 � tan�1
�
1

�
tan�0

�
� �0 �

e2

4
sin 2�0

� e
4

8

�
sin 2�0 �

1

4
sin 4�0

�
�O�e6� (40)

Furthermore, the phase angle of theDeputy also affects its amplitude.
A fourth effect renders the formation off-center, due to the

presence of constant terms in the v} and w} components of motion.
The bias depends on the phase angles �0 and �0 of the Deputy.
Although the bias inw} cannot be controlled because %3 is specified
by relative orbit design requirements, the bias in v} can be removed
by an appropriate choice of %2.

The appearance of higher-order harmonics in v} andw}, but not in
u}, causes the fifth effect: that of skewness of the relative orbit plane.
When formations require the phase angles in the along-track and out-
of-plane to be equal, the radial motion is in-phase with the along-
track, and consequently, out-of-plane motion. Consequently, a plot
of the out-of-plane motion vs the radial motion would result in a
straight line. However, due to eccentricity effects, higher-order
harmonics appear inw}, but not in u}. The relative orbit is therefore
no longer planar. This will be demonstrated in the context of
projected circular orbit solutions.

The bias and skewness of the relative orbit are well known, as
reported by [16,29]. The bias, and the other three effects, can be
corrected to some extent by appropriate initial conditions. However,
it is necessary to analyze these effects with time, which is the
independent variable enforced by physics.

Time as the Independent Variable

If the normalized time � is chosen as the independent variable, then
the relative motion expressions are qualitatively the same, that is,
they exhibit the same properties as in the preceding section.
However, in the quantitative sense, the equations are different. In this
section use is made of the following relations [23]:

cos kM�
X1
n��1

Jn��ke� cos�n� k�E (41a)

sin kM�
X1
n��1

Jn��ke� sin�n� k�E (41b)

where Jn are Bessel functions of the first kind of order n, and

Jn�	� �
X1
l�0

��1�l
22l�nl!�n� l�! 	

2l�n (42)

It can then be shown that

v}��� � �a0%1 cos�0 � c0%2�

�
X1
k�1
��ak%1 cos�0 � ck%2� cos k� � bk sin�0 sin k�	 (43a)

w}��� � p0%3 sin�0

� %3
X1
k�1
�pk sin�0 cos k� � qk cos�0 sin k�� (43b)

where

a0 ��
e

2�2
�3� 2�2�;

ak ��
�1 � k�4�
k�2

Jk�1�ke� �
�1� k�4�
k�2

Jk�1�ke�
(44a)
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bk �
2

�

Jk�ke�
ke
� ��Jk�1�ke� � Jk�1�ke�	 (44b)

c0 �
3 � �2
2�2

; ck �
e

k�2
�Jk�1�ke� � Jk�1�ke�	 (44c)

p0 ��
3e

2�2
; pk ��

1

k�2
�Jk�1�ke� � Jk�1�ke�	 (44d)

qk �
2

�

Jk�ke�
ke

(44e)

Even though bk andqk have e in the denominator, the computation of
these expressions do not cause problems as e! 0, because of the
following expansion:

Jk�ke�
ke

�
X1
l�0

��1�l
22l�kl!�k� l�! �ke�

2l�k�1; k � 1 (45)

The expansion of u} in terms of harmonics of themean anomaly is
straightforward because the equations relating cos f and sin f to
cos kM and sin kM are provided in Battin [23]:

u}��� � %1 sin�0 cos f� %1 cos�0 sin f

��e%1 sin�0 �
2�2

e
%1 sin�0

X1
k�1

Jk�ke� cos kM

� �%1 cos�0
X1
k�1
�Jk�1�ke� � Jk�1�ke�	 sin kM (46)

Consequently, using a numerical procedure, table lookup, or
truncation of the series to the desired order of eccentricity, Eqs. (43a),
(43b), and (46) provide time-explicit expressions for bounded
relativemotion,which can perform as excellent reference trajectories
for formation keeping.

Correcting for Bias

The problem of bias correction is now studied in detail, for the two
choices of the independent variable. Because the bias inw} cannot be
controlled, only the bias in v} is examined. An examination of
Eq. (38a) suggests the following choice of %2 to correct for bias:

%2 � "%1 cos�0 (47)

Equation (43a) suggests the following condition:

%2 � �e�3� 2�2�=�3 � �2�	%1 cos �0 (48)

However, the bias corrections suggested by Eqs. (47) and (48) have
different interpretations. Equation (47) does not offer meaningful
physical interpretation, in the sense that it is the average of a quantity
of a variable that is a nonlinear function of time. In this sense, Eq. (48)
is physically more significant, because this correction will imply that
the Deputy spends equal amounts of time on either side of the Chief
in the along-track direction. It is obvious that both biases converge to
zero as the Chief’s orbit eccentricity decreases, but have vastly
different interpretations for high eccentricities.

This point is illustrated by Fig. 2, for a Chief’s eccentricity of 0.6.
Let %1 � 1=2, %3 � 1, and �0 � �0 � 0. For a circular reference
orbit, these correspond to the HCW initial conditions for a projected
circular orbit. If%2 � "%1 cos�0, then the variation of v}with respect
to � is shown by the dashed line. It is therefore not immediately
apparent that this implies the Deputy is on either side of the Chief in
the along-track direction, for equal portions of the true anomaly.

Moreover, the motion is not symmetric with respect to the ih vector
because jv}���0�=%1j< 2%1 and jv}�� � �0�=%1j> 2%1. If %2�
�e�3� 2�2�=�3 � �2�	%1 cos�0, then the variation of v} is depicted
by the dotted line. This shows values that are greater than 2%1 for
regions near the Chief’s perigee, and less than 2%1 for regions near
the Chief’s apogee. However, the time-averaged value is zero. Thus
if the mission requires the Deputy to be near the Chief in the along-
track direction for large periods of time, this bias correction is
suitable.

It is also possible to have initial conditions such that
jv}���0�j � jv}�� � �0�j. With this correction, it is also noted
that motion in the along-track direction is bounded between�2%1. It
is easily shown that the correction corresponding to this condition is
given by

%2 � e%1 cos�0 (49)

Direct substitution of this condition in Eq. (36) results in v}���0� �
2%1 and v}�� � �0� � �2%1. The use of this correction results in the
solid line in Fig. 2.

Other versions of bias correction exist in the literature. Vaddi et al.
[12] and Melton [16] employ a correction that is valid for low
eccentricities. Inalhan et al. [13] describe a process for obtaining
initial relative velocity for symmetric motion, by posing the problem
as a linear program. However, any of the corrections derived in this
section are valid for arbitrary eccentricity. For example, using
Eqs. (32) and (49) results in the following:

v0 � 2u00 �
e sin f0

�1� e cos f0�
u0 (50)

Corrections to HCW Initial Conditions

It is of interest to study the deviation induced from the classical
HCW solutions due to eccentricity. The different cases are analyzed
individually.

Leader–Follower Formation Modified by an Eccentric Reference

Orbit

In the leader–follower formation, the Deputy is at a fixed distance
from the Chief along the reference orbit. In the classical HCW
environment, this is obtained by setting k1 � k3 � 0, and k2 � d in
Eqs. (35), where d is the desired separation of the Deputy from the
Chief. However, if %1 � %3 � 0 and %2 � d in Eqs. (36), then the
Deputy–Chief separation varies from d=�1� e� to d=�1 � e�, with a
time-averaged value of c0d. Consequently, the correct choice for %2
should be %2 � d=c0 � 2�2d=�3 � �2�. Irrespective of whether or
not the distance is corrected for, care must be taken that a value of %2
is chosen to ensure that the minimum separation meets design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

τ/(2π)

y 
(k

m
)

Amplitude Correction
f −Correction
τ−Correction

Fig. 2 Effect of bias corrections on along-track motion, e� 0:6.
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requirements, because as eccentricity increases, the minimum
separation decreases.

Projected Circular Orbit Modified by an Eccentric Reference Orbit

Projected circular orbits (PCO) are obtained in theHCWequations
by setting 2k1 � k3 � %, and  0 � ’0 in Eqs. (35). Consequently,
v2h �w2

h � %2. However, PCOs can never be obtained near an
eccentric reference, as is evident from Eqs. (36). It is possible,
however, to choose initial conditions such that the relative orbit is as
circular as possible, at least to the first harmonic. Assuming that
%2 � e%1 cos�0 is chosen as the zero-bias condition, then %1 � %=2
is sufficient to ensure that maximum and minimum values of v}���
are consistent with HCW conditions. However, the new phase angle
for the first harmonic of v}��� is now ~�0, where

tan ~�0 �
b1

a1 � e
tan�0 (51)

For consistency, it is desired that the first harmonic of w}��� also
have the same phase angle as v}���, so that to the first harmonic, a
corrected PCO is obtained. The phase angle of the first harmonic of

w}��� is denoted by ~�0, where

tan ~�0 �
p1

q1
tan�0 (52)

Consequently,

tan�0 �
q1
p1

tan ~�0 �
q1
p1

tan ~�0 �
q1b1

p1�a1 � e�
tan�0 (53)

Finally, though out-of-plane bias cannot be controlled, its amplitude
can be corrected so that the time average of w}��� is equal to %.
Consequently,

%3 �
%

�p2
1sin

2�0 � q21cos2�0�1=2
(54)

It is also possible to ensure that maximum w}��� does not exceed
%. From Eqs. (36), the extrema of w}�f� occur when
cos�f� �0� � e cos�0 � 0, or when f���0 � cos�1��e cos
�0�. Of these, the negative sign corresponds to minimumw}�f� and
positive sign to maximum w}�f�. Thus if

%3 � ��e sin�0 �
���������������������������
1 � e2cos2�0

p
�% (55)

then the maximum deviation in the out-of-plane motion will be
bounded by �%. An issue with this approach is that by placing
bounds on the maximum out-of-plane motion, its minimum is also
naturally reduced, which may bring the Deputy very close to the
Chief.

Figure 3 shows examples of a formation initiated with the
corrected and uncorrected initial conditions, for a reference orbitwith
e� 0:2 and e� 0:7, with �0 � 0 deg. In these figures, the ideal
PCO is shown as a dashed-dotted line. If the Eqs. (35) are used to
generate initial conditions for a PCO, then these will result in
unbounded motion because Eq. (29) is not satisfied. However, if
Eqs. (35) are used to generate initial conditions for all the states
excluding v00, and Eq. (29) is used to generate an initial condition for
v00, the result will be a relative orbit that is bounded, but without a
circular projection. The extent of this deviation is depicted by the
dashed line. The solid line depicts the result of applying the
amplitude correction developed in this section, and the bias
correction from Eq. (49). In both cases, bias in the out-of-plane
direction is absent, but as shown in Fig. 3b, bias in along-track
direction is significant. The corrections developed in this paper
successfully keep along-trackmotion bounded to the desired value of
1 km. It should also be observed that for high eccentricities, as shown
in Fig. 3b, projected motion resembles a triangle; this may be
exploited for mission design. The bias in the y direction, which is a
function of cos�0, and consequently is maximumwhen �0 � 0 deg,
is removed entirely, as is shown in Fig. 3a.

Figure 4 shows the effects of eccentricity, if �0 � 90 deg. In this
case, bias in the along-track direction is absent, but out-of-plane bias,
which is a function of �0, is maximum. Although there is no
significant difference upon application of the corrections in Fig. 4a,
the amplitude correction is evident in Fig. 4b. As eccentricity
increases, the Deputy’s maximum displacement out of the plane
increases to several kilometers. The amplitude correction limits this
excursion.

The effect of eccentricity on the 3-D character of the relative orbit
is shown in Fig. 5. This figure corresponds to initial conditions
consistent with Fig. 3, for three values of eccentricity. The solid line
shows the out-of-plane vs radial motion for a circular reference,
which will be a straight line, because the phase angles have been
chosen to be equal. However, the dashed line, and the dashed-dotted
line, which correspond to e� 0:3 and e� 0:8, respectively, show
that the effect of higher-order harmonics causes increasing deviation
from the relative orbit plane.

General Circular Orbit Modified by an Eccentric Reference Orbit

The general circular orbit (GCO) is obtained in the HCW sense by
requiring that u2h � v2h � w2

h � %2. Consequently, k1 � %=2, k3�p
3%=2, k2 � 0, and  0 � ’0. These conditions lead to a relative

orbit that is circular on a plane (local in the rotating frame). For an
eccentric reference, the initial conditions need to be modified,
because using the HCW initial conditions do not lead to GCOs. The
modifications derived in this section only account for the first
harmonic in the Fourier–Bessel expansions of Eq. (36).
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Fig. 3 Near-PCO relative motion with HCW and corrected initial

conditions, %� 1 km, �0 � 0 deg.
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Upon choosing %3 � �
p
3=2�%=p�p2

1sin
2�0 � q21cos2�0�, it is

evident thatw2
}��� � �3=4�%2sin2�f� ~�0�. Thus, %1 � %=2 remains

a valid choice to obtain a GCO-like relative orbit. The phase angles
are chosen in the same fashion as those for the PCO. Figures 6a and
6b show near-GCO formations for a reference orbit with e� 0:2, for
�0 � 0 deg (maximum y bias), and �0 � 90 deg (maximum z bias),
respectively. The legend in the figures is consistent with the

preceding section, as is the choice of boundedness condition.
Furthermore, similar to the preceding section, the corrections are able
to eliminate bias in the y direction, but not in the z direction.

Conclusions

This paper studies the effects of eccentricity on the shape and size
of relative orbits. Parameters based upon the relative orbit shape and
phase angle are developed. It is shown that these parameters aremore
meaningful than existing works to study the effects of eccentricity.
The key effects are identified as those that lead to amplitude and
phase changes, and introduction of bias. Corrective schemes are
proposed that exploit the effects of eccentricity, and in some cases,
these lead to relative orbits very close or similar to those predicted by
the HCW equations. Because the effects of eccentricity are studied
both in a qualitative and quantitative fashion, these results can serve
as excellent models for future mission design. Furthermore, the
approach in this paper yields results that are valid for all values of
orbit eccentricity. The approach in this paper unifies the solutions to
the Tschauner–Hempel equations, and the relative motion descrip-
tion using differential orbital elements. By using nonsingular
elements, the results are shown to be uniformly valid even when the
Chief’s orbit is circular. The transformation between the relative
orbit parameters and differential orbital elements can be used to
design impulsive or continuous maneuvers for the establishment of
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such formations, at low cost, because they include the full effects of
eccentricity. The parameterization is also useful for more
complicated analysis for formation flight, for example, nonlinear
formation flight.

Appendix: Relative Motion Expressions Using
Nonsingular Elements

The nonsingular orbital element set comprises the elements
f a i � q1 q2 
0 g> where q1 � e cos!, q2 � e sin!, and

0 � !�M0 (similarly, F� !� E, and �� !� f), is the mean
(similarly, eccentric, and true) argument of latitude. A solution to the
TH equations using � as the independent variable is easily obtained,
by observing that Eqs. (9) may be rewritten as

x��� � � ~c1 cos �� ~c2 sin ������ �
2c3
�2

�
1 � 3

2�3
��������K���

�

(A1a)

y��� � �� ~c1 sin �� ~c2 cos ���1� ����	 �
3c3
�5
�2���K��� � c4

(A1b)

z��� � c5 cos �� c6 sin � (A1c)

where

���� � 1� q1 cos �� q2 sin �� 1� e cos f (A2a)

���� � q1 sin � � q2 cos �� e sin f (A2b)

The arbitrary constants ~c1 and ~c2 are evaluated as follows:

~c1 � c1 cos! � c2 sin!

�� 3

�2���0�
�q1�1� cos2�0� � q2 sin �0 cos �0

� �2 � �2� cos �0	x0 �
1

�2
�q1 sin �0 cos �0

� q2�1� cos2�0� � sin �0	x00 �
1

�2
�q1�1� cos2�0�

� q2 sin �0 cos �0 � 2 cos �0	y00 (A3a)

~c2 � c1 sin!� c2 cos!

�� 3

�2���0�
�q1 sin �0 cos �0 � q2�1� sin2�0�

� �2 � �2� sin �0	x0 �
1

�2
�q1�1� sin2�0�

� q2 sin �0 cos �0 � cos �0	x00 �
1

�2
�q1 sin �0 cos �0

� q2�1� sin2�0� � 2 sin �0	y00 (A3b)

The constants c5 and c6 are already nonsingular, and c4 is rewritten as

c4 ��
1

�2
�1� ���0�	

�
�
3���0�
���0�

x0 � �2 � ���0��x00 � ���0�y00
�
� y0 (A4)

Furthermore, K��� is Kepler’s equation rewritten in nonsingular
variables:

K��� � �F � q1 sinF� q2 cosF�
� �F0 � q1 sinF0 � q2 cosF0� � 
 � 
0 (A5)

The differential nonsingular orbital elements, �q1, �q2, and �
0
can be written in terms of the initial conditions as shown:

�q1 � cos!�e� e sin!�!
� �3q1 � 3 cos �0�x0 � q2y0 � q2 cot i cos �0z0
� sin �0�1� q1 cos �0 � q2 sin �0�x00
� fq1 � cos �0�2� q1 cos �0 � q2 sin �0�gy00
� q2 cot i sin �0z00 (A6a)

�q2 � sin!�e� e cos!�!
� �3q2 � 3 cos �0�x0 � q1y0 � q1 cot i cos �0z0
� cos �0�1� q1 cos �0 � q2 sin �0�x00
� fq2 � sin �0�2� q1 cos �0 � q2 sin �0�gy00
� q1 cot i sin �0z00 (A6b)

�
0 � �!� �M0 � cot i�cos �0z0 � sin �0z
0
0�

� 1

1� � �2 � � � �
2 � q1 cos �0 � q2 sin �0�x0 � y0

� 1

1� � f2�� 2�2 � �q1 cos �0 � q2 sin �0�

� �1� q1 cos �0 � q2 sin �0�gx00

� 1

1� � �q1 sin �0 � q2 cos �0�

� �2� q1 cos �0 � q2 sin �0�y0 (A6c)

Equations (A6) are free from singularities when e� 0, but are more
complicated than the corresponding expressions for the classical
orbital elements.

The most general form for periodic relative motion is also
modified, because f cannot be uniquely determined. Therefore,
Eqs. (31) are rewritten as

x}�f� �
%1
p
sin��� ~�0��1� q1 cos �� q2 sin �� (A7a)

y}�f� �
%1
p
cos��� ~�0��2� q1 cos �� q2 sin �� �

%2
p

(A7b)

z}�f� �
%3
p
sin��� ~�0� (A7c)

where

%1 � �u20 � u020 �1=2 �
a

�
��1 � �2��
20 � 2�q2�q1 � q1�q2��
0

� �q1�q1 � q2�q2�2 � �q21 � �q22	1=2 (A8a)

%2�v0�1�q1 cos�0�q2 sin�0��u00�2�q1 cos�0�q2 sin�0�

�p
�
��cos i��1����

2�
�3�1��� �q2�q1�q1�q2��

1

�3
�
0

�
(A8b)
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%3 � ��1� 2q1 cos �0 � 2q2 sin �0 � q21 � q22�w2
0

� �1� q1 cos �0 � q2 sin �0�2w020 � 2�q1 sin � � q2 cos ��
� �1� q1 cos �0 � q2 sin �0�w0w

0
0	1=2

� p��i2 � ��2sin2i�1=2 (A8c)

~� 0 � tan�1
�
u0
u00

�
� �0

� tan�1
�
�1� ����q1 � q2�
0� � q1�q1�q1 � q2�q2�
�1� ����q2 � q1�
0� � q2�q1�q1 � q2�q2�

�
(A8d)

~�0� tan�1

�
�

�1�q1 cos�0�q2 sin�0�w0

�1�q1 cos�0�q2 sin�0�w00��q1 sin�0�q2 cos�0�w0

�
��0

� tan�1
�
���sini

�i

�
(A8e)

Conversely, the orbital element differences �q1, �q2, and �
0 may

be written in terms of the design parameters %1;...;3, ~�0, and ~�0, as
shown:

�q1�q1q2
%1
p
cos�0��1�q21�

%1
p
sin�0�q2

�
%2
p
���cosi

�
(A9a)

�q2�q1q2
%1
p
sin�0��1�q22�

%1
p
cos�0�q1

�
%2
p
���cosi

�
(A9b)

�
0�
%2
p
� ��cos i��1����

2�
�1���

%1
p
�q1 cos�0�q2 sin�0	 (A9c)

It should be noted that though the use of nonsingular orbital
elements eliminates problems with e! 0, they are still not suitable
for use when i! 0. For example, cot i appears in Eqs. (A6).
Equinoctial elements [36] may be used to avoid this problem.
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